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INTRODUCTION

In recent years advances in many aspects of communication theory have

proven to be limited by a lack of sufficient developments in the areas of

applied probability and mathematical statistics. Our investigations attemp-

ted to overcome this deficiency by contributing both to the underlying

theoretical basis of the area as well as to communication engineering. Among

other areas, we have obtained fundamental results relating to nonlinear trans-

formations of random processes, nonparametric estimation of regression

functions, and signal detection theory.

This report is a survey of the technical activities ensuing from the

Grant AFOSR-76-3062. In the next section we list the publications which were

supported by this grant. Then we name the additional personnel who contributed

to the research effort. We conclude with a brief survey of the research

results. AccesOn -O-
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SUMMARY OF RESEARCH RESULTS

In this sert-.t, we briefly survey the principal results of our research.

Nonlinearities with Random Inputs

Mean square continuity of a random process is of considerable theoretical

and practical importance. In many general treatments of random processes,

mean square continuity is taken as a standing assumption (see, for example,

[1] and [2]). We have investigated the mean square continuity of a random

process after it has undergone a (zero memory) nonlinear transformation. Such

nonlinearities are frequently encountered in many signal processing sche.,ies;

for example, quantizers, limiters, rectifiers, etc. Also, one of the most

common models of non-Gaussian noise is a nonlinearly distorted Gaussian process.

Before the initiation of this research, the most general result of this nature,

obtained by this investigator, was for the case of first order stationary

random processes [3]. We have now extended this previous result to consider

nonstationary random processes [4]. We have established conditions on both

the nonlinearity and on the random processes. For example, it follows that if

X(t) is a mean square continuous Gaussian process whose variance is not identi-

cally zero, and if V is the class of all Borel measurable functions g such

that g[X(t)] is a second order random process, then g[X(t)] is mean square con-

tinuous, for any g e16, if and only if the variance of X(t) is never zero.

A rather surprising result of the investigation was that the preservation of

the mean square continuity after a (zero memory) nonlinear transformation

depended solely upon the univariate distribution of the random process, not

the bivariate distribution. This was true even though mean square continuity

is a bivariate property, not a univariate property, of a random process. As

a consequence, in the above situation, it is not necessary to work with the

-10-
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bivariate distribution, which may not be completely known in many practical

situations.

We extended the preceding idea to the following more general situation.

Consider a system with a giv2n input and the corresponding output. If a

sequence of inputs converged to that particular input, it would often be of

interest to know when the corresponding sequence of outputs converged to the

particular output. In [5] we were concerned with this problem in a stochastic

framework. We considered random variables taking values in a separable metric

space, and we considered a Borel measurable mapping g from the metric space to

the reals. The elements of the metric space represented the possible innuts

to the system and the mapping g represented the system.

Let (S,p) be a separable metric space and letdbe the a-algebra in S

generated by the closed sets. Let ( P) be a probability space. An S-

valued random variable will be a measurable function from (aLx) to (S,s/)•

Let X be an S-valued random variable, and let p denote the measure induced on

.dby X, that is, for A e r, p(A) = P{X e A}. Similarly, let {Xn; n=l,2,...}

be a sequence of S-valued random variables with corresponding measures Vn

induced onJ/. The random variables X are said to converge to X in probability
n

if for any > 0,

lim P{p(X,Xn)>E} = 0.
n-),c

The measures pn are said to converge to p setwise if, for any element A of.n/,

lim V n(A) = p(A)
n-

Let Xg denote the Borel sets on R . Consider a measurable function k:(S,,,/)

(IR , and an S-valued random variable Y. Then k(Y) is a real-valued

random variable. We say that k(Y) belongs to Lp (p>l) if
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f Ik[Y(.)]I p P(dw) < * .

If k(Y) e Lp, we define the Lp norm as

I I k ( Y ) II : f k [ Y ( . ) ] j P 
=( 

d , ) 1 / p

In [5] we were interested in a sequence of S-valued random variables

X that converge to X in such a way that g(Xn) converges to g(X) in Lp where

g is a measurable function. The following result was proved.

Theorem 1: Assume that Xn  X in probability and that n setwise.

Suppose g is a measurable function from (S,. /) to (R,,?) such that g(X) and

g(Xn) belong to Lp. Then g(Xn) g(X) in L if, and only if,

IIg(Xn)l -IIg(XMl

We further investigated various particular consequences of this theorem.

By proper choice of the metric space, we can use these results to establish

some convergence properties of general functional transformations of random

processes.

From an applied point of view, one of the most important characteristics

associated with a (stationary) random process is its spectrum. Many results

concerning random processes are based upon spectral representations. In the

context of the transmission of random signals, the spectral distribution is

used to determine how much bandwidth is required for faithful transmission.

We have studied the effect of a zero memory nonlinearity on the spectrum of

a random process. Consider a random process with a spectral distribution func-

tion F. The second moment bandwidth of the random process is given by

F 2 7 2dF(w) 1/2

L dF())

L- ,.~
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In [6,7] we gave the following result:

Theorem 2: Suppose that X(t) is a zero mean, stationary Gaussian process

that has a finite second moment bandwidth B and that possesses a spectral

density function. If g is a Bore] measurable function that is not constant (we

identify functions equal a.e.) such that g[X(t)] is second order and E{g[X(t)]} 0,

then the second moment bandwidth of Y(t) = g[X(t)] is greater than or equal to B.

Equality holds if and only if g is linear.

In [6,7] and [8,9] we also presented the following result:

Theorem 3: Let X(t) be a stationary, mean square continuous Gaussian random

process with a nonconstant autocorrelation function, and let g be Borel measur-

able and such that g[X(t)] is second order. Then g[X(t)] is strictly bandlimited

if and only if

(a.) X(t) is strictly bandlimited, and

(b.) g(.) is a polynomial.

Notice that many conmon zero memory nonlinearities are not polynomials.

In particular, it follows that if X(t), given in Theorem 3, is passed through

any type of limiter, then the output cannot be strictly bandlimited.

In actual practice, the validity of the Gaussian assumption is often

questionable, and the preceding results were known to be valid for certain

specific non-Gaussian processes. Recently we extended our analysis to some

very wide (nonparametric) classes of non-Gaussian processes.

Let X(t) and N(t) be independent random processes that are second order,

mean square continuous, and second order stationary. Assume that X(t) is a

Gaussian process and that the autocorrelation function of X(t) is not a con-

stant function. In [9] we obtained the following result.

( _
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Theorem 4: Let Y(t) = X(t) + N(t), and let g(.) be any Borel measurable

function such that g[Y(t)] is a second order random process. We regard as

identical two Borel measurable functions gl(.) and g2(
.) such that g1[Y(t)]

and g2 [Y(t)] are equivalent random processes.

A. If g(.) is not a polynomial, then g[Y(t)] cannot be bandlimited

for any mean square continuous second order stationary random process

N(t).

B. If X(t) is not bandlimited, then g[Y(t)] cannot be bandlimited for

any nonconstant Borel measurable function g(.) such that

E{ (g[Y(t)]) 2 } < 0

In Theorem 4 Y(t) can be regarded as a contaminated Gaussian process

where N(t) is the contamination component. Other than the very mild restric-

tions mentioned above, N(t) is totally arbitrary.

In [10] we presented the following theorem which concerns the effect of

a ZNL on the spectrum of randomly modulated Gaussian noise. In this theorem

X(t) and N(t) are as above.

Theorem 5: Let Y(t) = N(t) X(t) and let g(.) be a Borel measurable func-

tion such that g[y(t)] is a second order random process. We regard as iden-

tical two Borel measurable functions gl( -) and g2(') such that g1[Y(t)] and

g2[Y(t)] are equivalent random processes. Then statements A and B of Theorem

3 hold.

In [11] we presented results concerning equivalent classes of zero memory

nonlinearities; that is, different nonlinearities which produce the same

spectral transformations upon a stationary random process.

There exist a great many results based upon the second moment character-

ization of random processes. Almost all of linear filtering theory and linear

estimation is based upon second moment theory. Many classes of random processes

! .4



are defined in terms of their second moment properties, for example, purely

nondeterministic random processes, wide sense Markov processes, bandlimited

processes, etc. Except for the case where a class of random processes is

defined in terms of its second moment properties, there are few results con- Jr

cerning the restrictions placed upon the second moment properties of a random

process by virtue of the random process belonging to a certain class. For a

Gaussian random process, there are no restrictions placed upon the second moment

properties, other than those restrictions which are common to all second moment

properties. Hlowever, this is not true for non-Gaussian processes. We have

established some results of this nature. Results such as these have application

in modeling the second moment statistics of randomi signals and noise. Notice

that since much filter design is based upon second moment theory, results of

this nature will also be important from the viewpoint of system design.

In a related context, an investigation of a discrete time nonlinear Wiener

filter was initiated. The filter was constrained to be composed of a menmoryless

nonlinearity followed by a linear filter. The study was concerned with deter-

mining how to specify the memoryless norilinearity. Once the nonlinearity is

known, the linear filter can be determined with standard techniques. The

results of this effort are given in (12] and [13), where several methods are

investigated for determining the nonlinear systems. It is shown that in many

cases a nonlinear system of this form can significantly outperform the optimal

linear system.

Regression Functions

In this area we investigated two different aspects of the regression

function
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m(x) = E{YIX=x),

where Y is an integrable random variable and X is a random variable or a

random vector.

In [14, 15] we were concerned with determining the regression function

m(x) from only a partial characterization of the joint distribution of X and

Y. We showed the following:

Theorem 6: Let Y be an integrable random variable, let X be an arbitrary

random variable, and let g() be an invertible Borel measurable function mapping

the reals into a bounded set. Then the regression function m is determined up

to probability one equivalence by the quantities

E{[g kx)R , k = 1,2,...

and

E(Y[g(x)]k), k = 0,1,2,...

Thus from this theorem we see that statistical infor'nation consisting of

various moments and joint moments is sufficient to charaLterize a regression

function. In [14, 15] the extension to the case where X is a random vector

taking values in F n or a random process, e.g. {X(t), tET) , is given.

In a different aspect of this area, we investigated the estimation of a

regression function from empirical data. It is reasonable to expect that with

a large amount of empirical data we could achieve a good estimate of a regres-

sion function. However, with a large amount of data, we may be faced with

computational burdens in processing them. Therefore, a recursive method of

estimation may seem attractive. In [16] we presented distribution-free con-

sistency results for the recursive nonparametric re(jression function estimation

problem.

Assume that (X,Y), (Xi,YI), ... , (XN, YN) are independent identically

I Mdftw1e
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distributed R d x R-valued random vectors with E {IYI} < -. Consider

estimating the regression function

m(x) = E {YIX=x}

from the data (X1,Y1),..., (XN, YN). We proposed the following estimate.

Break the data up into disjoint blocks of length b,, b2, ... , b n , and among

all Xi in the j-th block, find the one that is closest to x in the Iq norm

II •I on R d (in case of a tie, pick the Xi with the lowest index i). Let

us call the corresponding R d x JR-valued random vector (X., Y*). (The

dependency on x is suppressed for the sake of brevity.)

If {Wnl' ... , Wnn}, n > 11 is a triangular array of positive weignts,

then we proposed to estimate ni(x) by

n *
PI .J

SW =(1)
n n

Wnj
j=1

when N = b1 + ... + bn observations (Xi,Y i) are available. Notice that when

Wni vi for all n,i, then the computation in (1) can be performed recursively.

That is, there is no need to store all the observations (Xi,Yi), and if we are

not satisfied with mn we can collect more observations and update our estimate.

Also, (1) retains the flavor of the nearest neighbor estimates (see, for example,

[17, 18]), but the processing burden arising from the ranking procedure is less.

The conditions which we put upon bn and wni were weak:

nn
b

sup wni n0.
l<i<n n

J=1
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Let

I m.(x) - ,(x)IPp (dx)

where v is the probability measure of X. In [16] we showed that

E {I np + 0 whenever E {1YI p} < - (p>l), and that Inp n 0 with probability

one when Y is almost surely bounded.

Consider the case that Y is {l, ..., M} -valued and that Y must be

estimated from X and the data (the discrimination problem), by, say,

gn(X) where 9n is a Borel measurable function

dd Ngn : R d  x OR~ x {I,...,M}) N  -11'....,M)

In [16] we considered an application to the discrimination problem, and

we presented a discrimination rule that was strongly Bayes risk consistent.

This is the first distribution-free strong Bayes risk consistency result in

the literature.

In [19] the LI convergence of kernel regression function estimators was

studied, and some applications to the discrimination problem were considered.

Detection in Laplace Noise

Recently, there has been considerable interest in the detection of

signals in non-Gaussian noise. Although the assumption of Gaussian noise is

frequently justified, such as in UHF; in other cases, such as ELF (extra low

frequency), the assumption is definitely unjustified. One form of frequently

encountered non-Gaussian noise is that known as impulsive noise. Impulsive

noise is typically characterized as noise whose distribution has an associated

"heavy tail" behavior. That is, the probability density function (pdf) approaches

zero more slowly than a Gaussian pdf. We considered the discrete time detection

. ... . t I

.......'I" l I ..I ... 1" " '
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of a known constant signal in additive white Laplace noise. Laplace noise

is characterized by a double exponential pdf. This noise is typical of the

class of impulsive noises. The references in [20] give a summary of some

forms of impulsive noise and situations where it arises. For example, Bern-

stein, et al. [21] comment on the non-Gaussian nature of ELF atmospheric

noise, and they give a plot of a typical experimentally determined pdf asso-

ciated with such noise [21, figure 10]. This experimentally determined pdf

is similar to a Laplace pdf, and on a linear graph the difference is barely

distinguishable. To quote Miller and Thomas [22]: "Non-Gaussian noise does

not seem to be a problem for radars operating at UHF and above, but those

long range radars operating at HF frequencies must contend Aith the same im-

pulsive atmospheric noise that disturbs communication systems in that spectral

region."

The form of the Neyman-Pearson optimal detector for this problem is well

known [22, 23] and has the structure of an amplifier-limiter followed by a

summer. The accumulated sum is the test statistic which is compared to a

threshold to announce the presence or absence of the signal. In order to

determine the performance of the detector, it is necessary to know the distribu-

tion of the test statistic. This is pertinent, for example, to the determina-

tion of how many samples must be taken to achieve a given level of performance.

The distribution of the test statistic has been extremely elusive and

past attempts at obtaining a simple expression for this distribution have not

been very successful. The most notable success had been achieved by Miller

and Thomas [23], who gave a lengthy and complex recursiorn scheme for obtaining

the distribution. Their results, however, were of a numerical nature and did

not culminate in a closed form analytical expression for the distribution of

the test stdtistics. In fact, for 35 samples their method required over half

:1
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an hour of time on an IBM System 360 Model 91 digital computer.

If the number of samples were sufficiently large, the Central Limit

Theorem would apply, and the distribution of the test statistic would be

approximately normal. However, the small sample performance of the detector

would still be unknown (see, for example, [23, 24]). Alternatively, one could

establish bounds on the detection and false alarm probabilities, and thus

establish a bound on detector performance; or Monte Carlo simulation may be

employed. In general, however, it would be desirable to have a convenient

expression for the probability distribution of the test statistic.

In our recent investigations [25-27] we developed a simple, convenient,

closed form analytical expression for the probability distribution function

of the test statistic for the Neyman-Pearson optimal detector. This result

enabled us to study several aspects of the detection problem. In particular,

we analyzed the small sample performance of the optimal detector. We also

considered the performance of the linear detector.

These results are pertinent to long range radars operating in spectral

regions associated with Laplace noise. They may also yield some insight

into relative efficiencies. Detectors are frequently compared on the basis

of asymptotic relative efficiency. However, as noted by Helstrom [28], when

the number of samples is not large, the detectors, or receivers, may behave

quite differently from the predictions of the asymptotic theory. Very little

work has been done in this area [23]. Our results offer the possibility of

more insight into relative efficiencies.

It should be noted that for the Neyman-Pearson discrete time detection

problem of a sure signal in non-Gaussian white noise, there are extremely few

cases where the distribution of the test statistic is known for an arbitrary

number of samples. Our result represents sich a case.
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As a specific conment on our work, to evaluate the distribution function

of the test statistic at a given point for the above problem with 35 samples,

our method requires less than one quarter of one percent of the computational

time required by the previously best known method.

Relative Efficiency of Detectors

The asymptotic efficiency of a discrete time signal detection scheme is

often viewed as a valid measure of its detection performance. In this case

the asymptotic relative efficiency (ARE) is usually employed as a criterion

for comparison of detectors. The ARE is generally held to be appropriate in

the case of large sample size and small signal strength. Moreover, the employ-

ment of the ARE generally yields mathematically tractable results, due largely

to the applicability of central limit theorems.

In any practical engineering situation, we can take only a finite number

of samples. The number of samples available, however, may not be sufficiently

large to ensure that the ARE is an appropriate indicator of detection efficiency.

For example the requirement that the samples be statistically independent may

set an upper bound on the sampling rate. Thus we are actually concerned with

the efficiency of the detector with the number of samples available. In this

case the relative efficiency between detectors is of interest. This quantity

is a measure of the amount of data one detector requires, relative to a

reference detector, to attain a prescribed level of performance. It is gener-

ally accepted that the ARE gives a good indication of relative efficiency for

moderate sample sizes. However, the exact analysis of relative efficiency is

generally hindered by mathematical difficulties, and there has been very little !

work done in the area of relative efficiency analysis to verify this assumption

ii
1 .. . ,i l
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(see, for example [23]). In [29] we investigated the exact relative effi-

ciencies of two pairs of widely used detection systems for some commonly

assumed noise distributions, and we demonstrated that the ARE can sometimes

be a poor predictor of finite-sample-size detection performance even for

some very large sample sizes.

Signal Detection in Dependent Noise

A longstanding area of both practical and theoretical importance has

been the detection of signals in corrupting noise. A situation of increasing

interest and importance has been the presence of a dependent noise source.

Because of modern high-speed sampling such a situation should prove to be

even more important in the future. In this case Neyman-Pearson techniques

have been found to be tractable only in cases where the appropriate multivari-

ate distribution of the noise is known, e.g., if the noise process is Gaussian.

There are, however, a number of cases where a non-Gaussian assumption is

considered necessary (see, for example, [20, 21, 30-42]), and it would appear

likely that in the future such cases will become even more numerous.

Recall that the Neyman-Pearson optimal detector for independent data

consists of a memoryless nonlinearity followed by an accumulator followed by

a threshold comparator [22]. The Neyman-Pearson optimal detector for dependent

data consists of a more complicated structure. In some cases we may realize

that there is statistical dependence in the data and not be satisfied with

using the detector which is optimal for independent data, and at the same time

feel that there is not enough dependence within the data to warrant a radically

different structure for the detector. Also we might not have a complete enough

statistical characterization of the dependent data to design the Neyman-Pearson

' " . .. ..• . .. . . - , , ,- , , , .. . .
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optimal detector. Thus we maLy be satisfied with the basic structure of the

optimal detector for independent data but desire to choose a different (i.e.

other than the one which is optimal in the independent case) non-linearity

in the detector so as to account for the dependency in the data. This was

the approach taken by Poor and Thomas [42] who considered the detection of a

known constant signal in in-dependent noise. In our work we have significantly

generalized this approach.

In [43, 44] we extended the above in-dependence assumption to the case of

symmetrically r-mixing noise processes. Let {N} i= 1 be a strictly stationary

sequence of random variables. For a<b, define Ma = oiNa , Na .he

o-algebra generated by the indicated random variables. Then {Ni i=l is

symmetrically o-mixing if there exists a nonnegative sequence Ii=l with

ki 0 such that for each k, l<k<-o and for each i>l, El 6 MI ,E 2 e Mk+l

together imply

JP(E 1ChE 2) - P(E,) P(E2 < - max{P(El), P(E2 )}

Thus we wee that the assumption of a symmetrically q-mixing noise process

permits a great deal of flexibility in modeling the dependency structure of

the noise.

In [45, 46] we considered the same basic situation as investigated in

[43, 44] (i.e. the case for symmetrically -mixing noise), except we con-

strained the nonlinearity to be a polynomial. This polynomial constraint

resulted in a great deal of simplification in determining the nonlinearity in

the detector.

The class of random processes used to model the noise in the above work

may be seen to be quite general; however, the assumption of a constant known V

tI~4
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signal is in some cases overly restrictive. Instead of such an assumption,

we might wish to model the signal as a random process. Also, since we

allowed dependency between noise samples, it would be desirable to allow

dependency between signal samples. Finally, it would seem reasonable to

allow some degree of dependency between signal and noise (to encompass, for

example, the signal dependent noise induced through reverberation effects).

This is the situation we considered in [47, 48] where we extended the work of

[43, 44] to this area. That is, we used the same detector structure as described

above for [43, 44], but we allowed the signal to be symmetrically €,-mixing, we

allowed the r.)ise to be symmetrically q-mixing, and we allowed the noise to

be dependent upon a finite window of the signal (the i-th noise sample could be

dependent upon the (i-m)-th to the (i+m)-th signal samples). In [49, 50] we

generalized some of the results of [43, 44] and [47, 48] by weakening the as-

sumption of symmetrically ,-mixing processes to the assumption of strong mix-

ing processes.

The above work in signal detection which we have described required some

statistical knowledge of the data; in [43, 44] and [47, 48] bivariate densities

were assumed to be known, and in [45, 46] bivariate moments were assumed to be

known. In some pract4cal situations, however, very little is known concerning

the statistical properties of the noise. The employment of a nonparametric

detector is often desirable in situations where little information about the

statistics of the noise is available. If the noise sequence is independent and

identically distributed, a popular choice for detection of a constant signal is

the well known sign detector [51]. Because of a modern high speed sampling,

however, in many situations it is unlikely that adjacent samples of the waveform

could be considered to be statistically independent. What we might expect in

* l
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some situations is that samples separated sufficiently far apart in time

could be considered to be irdependent, i.e. an assumption of m-dependence

might be reasonable. In these cases the sign detector unfortunately loses

its nonparametric nature. It is thus desirable, when confronted with this

form of dependency in the noise, to modify standard nonparametric schemes in

a way which is easily implemented and yet preserves the nonparametric nature

of the detector under dependent inputs. One promising approach toward this

goal was considered by Kassam and Thomas [52]. Consider the detection problem

of a constant signal in m-dependent noise. Kassam and Thomas [52] considered

the following scheme. Group the samples into blocks of length n with m samples

skipped between the blocks. Then for each block add the samples together. Now

apply the sign detector to this sequence of independent random variables. We

will refer to this scheme as a modified sign detector. A question which natur-

ally arises for the modified sign detector is what choice of block length n

gives the best performance. In [52] the block length was investigated from the

viewpoint of the asymptotic situation. Asymptotic performance measures are

frequently used in statistics and the resulting schemes usually work well. How-

ever, in this particular scheme the block length n effectively serves to "shrink"

the data (i.e. n samples are summed, thus shrinking n samples to one sample).

At this point we might suspect the validity of asymptotic results, since regard-

less of how much the data are shrunk by the summing operation, we would still

be working with an Lnbounded number of blocks. In a practical situation there

would be a finite number of samples, and thus as n (the length of each block)

becomes larger, the number of blocks will decrease. In [53, 54] we investigated

how the block size for the modified sign detector may be selected for two fidel-

ity criteria, one based on a finite number of samples and the other on the

asymptotic limit. We have found by way of example that it is possible fc.r the
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two criteria to disagree radically on the optimal block size.

In [55] we analyzed the above sample and skip procedure as applied to

strong mixing noise. We showed how a modified sign detector may be designed

for the nonparametric detection of a constant signal in strong mixing noise.

Estimation of Probability Density Functions from Noisy Measurements

By and large, probability densities are not obtained from physical deriva-

tions, but from empirical data. Measurements are taken, and from these meas-

urements a density function is obtained. Several methods have been proposed

for the estimation of probability density functions, and numerous properties

of these methods have been studied [56, 57]. However, these methods assume

that the measurements from which the density is estimated are not corrupted by

noise. In many practical situations, the measurements from which one con-

structs the estimated density are corrupted by noise. The corrupting noise

might arise from background noise not associated with the random variable of

interest, or it may arise from noise introduced by the measuring techniques.

Although there is quite extensive literature on the estimation of probability

density functions (most of it relatively new), little has been done for the

case where the measurements are corrupted by noise.

As a specific example of the foregoing, we have treated the case where

the measurements are independent and identically distributed and corrupted by

independent additive Poisson noise. That is, each measurement is of the form

Y = X + N,

where N is a Poisson random variable and X is the random variable whose den-

sity function we desire to estimate. We have developed a procedure [58] for

estimating the density function of X from measurements corrupted by Poisson
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noise. We have established the appropriate forms of convergence and we have

given a practical realization of the estimator.

We also investigated various problems involving the recovery of a dis-

crete probability density from independent observations [59, 60]. We con-

sidered estimation of the discrete density function in the presence of additive

noise, and we solved the problem for the cases of Poisson, geometric, and

binomial noises. We also investigated the recovery of a discrete density when

some of the measurements are incorrect. Finally, we considered recovering the

parameters of a mixture density from independent observations. We derived an

easy-to-implement estimate of the parameters such that all of the parameter

estimates are nonnegative and they sum to unity.

Polynomial Expansions

Two common ways of representing functions have been polynomial expansions

and trigonometric expansions. In much of engineering the trigonometric ex-

pansion has useful interpretations and has dominated over the generalized Fourier

series expansions in applications. However, many functions are readily expressed

in terms of polynomials. We have derived [61-64] a simple linear transformation

which maps the polynomial representation into a trigonometric representation.

Also, we have derived the inverse transformation which maps a trigonometric

expansion to a polynomial expansion.

The inverse transformation has enabled us to develop a fast algorithm

for the computation of the Legendre polynomial coefficients for any L2[-,n],

function. The algorithm utilizes the Fast Fourier Transform (FFT) to compute

the Fourier series coefficients and then multiplies the vector of coefficients
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by a linear matrix transformation to compute the vector of polynomial coef-

ficients. This approach can offer a considerable saving in computation time

over the standard integral formula for computing these coefficients.

Polynomial Expansions of Bivariate Densities

The diagonal series expansion of a bivariate density function in terms

of orthonormal functions yields considerable structural information about the

bivariate density and, due to the previous work of this investigator [65], is

readily interpretable in terms of Markov sequences. In the case where the

orthonormal functions are polynomials, the bivariate density function is said

to belong to the class A, introduced by Barrett and Lampard [66]. The class

A has been studied by many people and several properties of this class are

known. However, the number of specific examples of bivariate densities which

belong to the class A is not large.

We have derived some new examples of bivariate density functions that

belong to the class A. The examples we have derived are associated with

Gegenbauer polynomials with parameter 3/2 [67].

Median Fil teriJn

In many signal processing applications the concept of a linear filter is

a basic one. However, there are situations where linear filtering is inade-

quate. For example, if the signal displays sharp discontinuities in addition

to being corrupted by high frequency noise, then a linear filter designed to

eliminate the noise will also smooth out the signal. Recently a nonlinear

Ids,
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method called median filtering has achieved some very interesting results.

Median filtering was introduced by Tukey [68-71], and it has produced prom-

ising results in picture processing [72, 73] and speech processing [74, 75].

However, most of the work in the open literature is of an empirical, a survey,

or an implementation nature. The implementation of a median filter requires

a very simple digital nonlinear operation. To begin, we take a sampled and

quantized signal and across this signal we slide a window that spans 2N+l

adjacent signal sample points. The filter output is set equal to the median

value of these 2N+l signal samples. The filter output is associated with the

time sample at the center of the window. To account for start up and end

effects at the two endpoints of the signal, N samples are appended to the

beginning and end of the sequence. The appended samples are constant and

equal in value to the first and last samples of the original sequence, res-

pectively.

In [76, 77] we presented a theoretical analysis of median filters. We

studied the effects of median filters, and we completely characterized the

signals which are unaffected by median filters. That is, we gave a necessary

and sufficient condition for a signal to be invariant to a median filter.

We called a signal unaffected by a median filter a root, and we showed that

by successive median filtering operations, any signal is reduced to a root.

For a signal of length L, we showed that a maximum of -(L-2) repeated fil-

terings produces a root signal. In particular, it follows that if a signal

is changed by a median filter, then this signal can never be exactly recovered

by successive median filtering operations (i.e. successive operations cannot

result in a cycling effect).

In (78, 79] we derived an expression for the bivariate distribution

iA
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function of the output of a median filter with independent identically dis-

tributed random variables for the input, and we analyzed the effect of a

median filter upon the second moment properties of a sequence of independent

identically distributed random variables. In the cases that we analyzed, we

found that the power spectrum of the output of the median filter suggested a

low sensitivity to the input distribution. Our results also suggested a low

pass characteristic of the median filter.

Spherically Invariant Random Processes

Communication engineers have traditionally relied upon the Gaussian

model, both because of practical considerations and important theoretical

properties. Often, extensions of the Gaussian process have been investigated,

which are frequently more general models but retain many useful properties of

this process. One particularly attractive property of a Gaussian process has

been the linearity of all minimum mean squared error estimation problems.

One such generalization of the Gaussian case has been the spherically invariant

random process (SIRP).

SIRP's were introduced by Vershik [80] when he was investigating a class

of random processes which shared some properties characteristic of Gaussian

processes. In particular, SIRP's are the most general class for which minimum

mean squared error estimates admit linear solutions, and this class of proces-

ses is closed under linear operations. In an interesting paper, Blake and

Thomas [81] explored some important properties of SIRP's. Then in a recent

paper [82] Yao presented some very significant results concerning SIRP's. In

* particular, he presented a representation theorem for the family of finite

dimensional distribution of SIRP's. The references in [82] provide a summary

1%'
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of other work done in this area.

We have established [83, 84] the following representation theorem for

SIRP's.

Theorem 7: A random process is a (centered) spherically invariant

random process if and only if it is equivalent to a random process of the

form AY(t), where A is an arbitrary random variable and Y(t) is a zero mean

Gaussian process independent of A. I-

This theorem explicitly illustrates the relation between a SIRP and a

Gaussian process, and most properties of SIRP's follow in an elementary

fashion from the theorem. This result will find applications in any situation

where a SIRP is used to model random phenomena.

Support Estimation

A problem of increasing significance to engineers concerns the detection

of abnormal or faulty behavior of a system, plant, or machine. Assume that

we have observed the system in normal operation and that we have taken meas-

urements of the normal behavior. A measurement is assumed to be an IRd-valued

random vector. The randomness may be due to measurement noise, parasitic

effects, or random inputs. Thus the measurements are given by XI,X2,... , Xn9

a sequence of JR d-valued random vectors which we assume are independent with a

common unknown probability measure p.

Classically, the assumption is made that one has access at the present

time to m independent observations X ,X2 .. . ,X ' with common probability measure

v, and the system is said to behave differently, or abnormally, if v p 1j. To

detect such a change in distrihution, several tests have been proposed (for

example, [85-91]).

_ _ _ _ _ _ _ _ _ "
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In [92] we treated the problem concerned with taking only one new

observation. For economic reasons, lack of time, or practical limitations,

only one new observation X can be made and there is no hope to recover or

approximate v as with the large sample X ,X,...,X'm. Regardless of v, we

say that the system behaves abnormally if X does not belong to S, the support

of P. In several practical applications, the complement Sc of S can be con-

sidered as a danger area because under normal behavior (with probability meas-

ure P) the probability that some of the Xi take values in Sc is zero. Thus

the problem is reduced to one of estimating the support S from Xl,X X

This problem is treated in [92].

Another problem that we considered was concerned with taking n new meas-

urements which are independent with common unknown probability measure v.

We assumed that the system might have changed, but we were concerned with

whether or not the system might exhibit abnormal behavior. We assumed that the

system still functions normally if the support of v is contained within S.

This problem was also treated in [92].

Topics in Quantization Theory

The quantization of continuous amplitude, discrete time signals combined

with the transmission of the quantized samples over noisy channels is a problem

that was considered in [93]. We investigated the total mean squared distortion

suffered by a companded, continuous amplitude memoryless source which is uni-

formly quantized and transmitted over a noisy channel with a known capacity.

We were interested in a small distortion analysis, i.e. quantizers with very

large numbers of quantization levels and channels whose capacities are large

I . .. .. . - - .~. . . -
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enough to carry the data rates coming out of the quantizer. The twin tools I
of asymptotic quantization thciory and rate distortion theory were used to find

an expression for the approximate total mean squared distortion. In [93]

the approximate total mean squared distortion was minimized over a class of

parameterized compressor characteristics for input processes whose univariate

probability density functions were members of the generalized Gaussian family.

In [94] we investigated the asymptotic theory of k dimensional quantiza-

tion for r-th power distortion measures. Subject only to a moment condition,

it was shown [94] that the infimum over all N level quantizers of the quantity

Nr / k times th, r-th power distortion measure converged to a finite constant

as N - ,. This work was more general than any of the previous efforts for

this distortion measure.
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